Production of photo-oxidants by dissolved organic matter during UV water treatment.
نویسندگان
چکیده
Dissolved organic matter (DOM) irradiated by sunlight generates photo-oxidants that can accelerate organic contaminant degradation in surface waters. However, the significance of this process to contaminant removal during engineered UV water treatment has not been demonstrated, partly due to a lack of suitable methods in the deep UV range. This work expands methods previously established to detect (1)O2, HO•, H2O2, and DOM triplet states ((3)DOM*) at solar wavelengths to irradiation at 254 nm, typical of UV water treatment. For transient intermediates, the methods include a photostable probe combined with selective scavengers. Quantum yields for (1)O2, (3)DOM* and H2O2 were in the same range as for solar-driven reactions but were an order of magnitude higher for HO•, which other experiments indicate is due to H2O2 reduction. With the quantum yields, the degradation of metoxuron was successfully predicted in a DOM solution irradiated at 254 nm. Further modeling showed that the contribution of DOM sensitization to organic contaminant removal during UV treatment should be significant only at high UV fluence, characteristic of advanced oxidation processes. Of the reactive species studied, (3)DOM* is predicted to have the greatest general influence on UV degradation of contaminants.
منابع مشابه
غلظت کربن آلی و پتانسیل تشکیل فرآوردههای جانبی گندزدایی در آب شرب شبکه توزیع آب تهران در برخی مواقع سال
Background and Aim: Natural organic matter (NOMs), measured on the basis of organic carbon, produces disinfection by-products precursors (DBPs) during the chlorination process. Some DBPs are carcinogenic. NOMs are not completely removed by conventional water treatment. As a result, in addition to forming DBPs, they support bacterial regrowth in the water distribution systems and cause unpleasan...
متن کاملA Comparison Study of the Removal of Selected Pharmaceuticals in Waters by Chemical Oxidation Treatments
The degradation of selected pharmaceuticals in some water matrices was studied by using several chemical treatments. The pharmaceuticals selected were the beta-blocker metoprolol, the nonsteroidal anti-inflammatory naproxen, the antibiotic amoxicillin, and the analgesic phenacetin; and their degradations were conducted by using UV radiation alone, ozone, Fenton’s reagent, Fenton-like system, ph...
متن کاملExploring Adsorption of Natural Organic Matter from Natural Waters by Surface-modified Activated Carbons
Naturally-occurring organic material (NOM) in dissolved, colloidal and particulate forms is ubiquitous in surface and ground waters. NOM is a heterogeneous mixture of complex organic materials including humic substances, hydrophilic acids, proteins, lipids, carboxylic acids, polysaccharides, amino acids, and hydrocarbons [1]. The dissolved and colloidal forms (i.e., DOM) are the most problemati...
متن کاملMonitoring dissolved organic carbon in surface and drinking waters.
The presence of natural organic matter (NOM) strongly impacts drinking water treatment, water quality, and water behavior during distribution. Dissolved organic carbon (DOC) concentrations were determined daily over a 22 month period in river water before and after conventional drinking water treatment using an on-line total organic carbon (TOC) analyzer. Quantitative and qualitative variations...
متن کاملPhotomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change
[1] Photomineralization of terrigenous dissolved organic matter (tDOM) in the Arctic Ocean is limited by persistent sea ice cover that reduces the amount of ultraviolet (UV) radiation reaching the underlying water column. UV-dependent processes are likely to accelerate as a result of shrinking sea ice extent and decreasing ice thickness caused by climatic warming over this region. In this study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 47 20 شماره
صفحات -
تاریخ انتشار 2013